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Grass to transport fuel
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Assessment of the impact of incentives and of scale on the build order
and location of biomethane facilities and the feedstock they utilise

Richard 0’Shea ", David Wall***, [an Kilgallon <, Jerry D. Murphy *"

“MaREl Centre, Environmental Research Institute, University College Cork, Cork, Ireland
" School of Engineering. University College Cork, Cork, Ireland
“Gas Networks Ireland, Gasworks Road, Cork, Ireland
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Fig. 1. Locations of potential biomethane injection points to the gas transmission network.
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Feasibility study of an off-grid biomethane mobile solution for agri-waste
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Fig. 3. Logistics of off-grid cooperative biomethane production applying mobile upgrading plant and storage tanks (mobile solution/virtual pipeline).
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What is the realistic potential for biomethane produced through
gasification of indigenous Willow or imported wood chip to meet
renewable energy heat targets?

Cathal Gallagher?, Jerry D. Murphy "<+

Plant Size MW 50
Land area (ha) 6800
Number of plants required 11

As a % Energy in Transport 5.5%

As a % of agricultural land 1.7%
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The effect of seasonal variation on biomethane production from seaweed
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Ensiling of seaweed for a seaweed biofuel industry @Cmssmm

Christiane Herrmann ?, Jamie FitzGerald ?, Richard O’Shea?®, Ao Xia*®, Padraig O’Kiely®, Jerry D. Murphy **

* Science Foundation Ireland (SFI), Marine Renewable Energy Ireland (MaREl), Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
b Teagase Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland

Higher methane yields after ensiling can
compensate for silage fermentation losses.

No losses in methane yield occurred during 90
day storage for 4 of 5 species.
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Life cycle assessment of seaweed biomethane, generated from seaweed @mm
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Sustainability criteria require
Bioenergy with Carbon Capture Sequestration (BECCS)
Or
Bioenergy with Carbon Capture and Reuse
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Study of the performance of a thermophilic biological methanation system
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HIGHLIGHTS

# Blological methanation was assessed In-situ and ex-situ.
® A 24-hour batch ex-situ system produced 3.7 LCH, Ly, ~'d ™" at 0% methane content.
# High hydrogen loadings boost performance while adversely affecting efficlency.

# Elevated hydrogen concentrations hamper In-situ acetogenesls process. Hz: 24'1;"':- : Hz: 13‘],-"'1: :
# Concepts for full-scale methanation strategles are proposed to uparade blogas. . .
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Modelling of a power-to-gas system to predict the levelised cost of energy of | )
an advanced renewable gaseous transport fuel =
Shane McDunagh“'“", Richard O'Shea™"*, David M. Wall*", J.P. Deane™", Jerry D. Murphy""”’”

* MaREI Centre, Envi Research Insiitute, Uniy Ireland
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o Other

Fig. 3. Breakdown of the system LCOE into its components for 2020 base scenario.

230
HIGHLIGHTS

# LCOEs of €124/MWh n 2020, €105/MWh in 2030, and £93/MWh in 2040 were found.

® Electricity is by far the largest contributor to the LCOE of a P2G system. 200
# Zero cost electricity for 6500 h/annum leads t an LCOE of €55/MWh.

® A 20% fall in LCOE requires a drop of 76.2% in CAPEX or 35.9% in electricity costs.

# Integration, secondary incomes, and incentives are essential for competitive P2G.
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MaREIl Bioenergy: ECONOMIC IMPACT
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