### **IrBEA Bioenergy Webinar Series 2020**

The Irish BioEnergy Association are hosting a series of one hour webinars relating to wood fuels, biogas and biofuels

#### WEBINAR 2

District Heating - Decarbonising our heat demand

DATE: Wednesday 24th June 9.30 - 10.30am





www.irbea.org @irishbioenergy

Email: noelgavigan@irbea.org/seanfinan@irbea.org



### About the Irish Bioenergy Association (IrBEA)

- Representative organisation for the Bioenergy Sector on Island of Ireland.
- Sectors of Biomass, Biogas, Biofuels, Energy Crops and Wood Fuels.
- Broad and Growing Membership across all the sectors.
- Work on behalf of members through Representation, Lobbying, Advocacy, Networking, Technical Support & Advice, Knowledge & Information sharing.
- Engaged in a number of Research, Development and Demonstration Projects.
- EIP Small Biogas Demo Project, Interreg Three C Project, Biomass Installers and Designers Registers and the Wood Fuel Quality Assurance Scheme (WFQA)
- To become a member and find out more check out <u>www.irbea.org</u> or our social media channels.

### Webinar No 2 – Agenda

- Opening by Chair Seán Finan (<u>seanfinan@irbea.org</u>) IrBEA CEO.
- Presentation by John O'Shea Energy Systems Analyst Codema.
- Presentation by Steve Richmond Head of Marketing & Technical REHAU.
- Panel Discussion and Q & A with Presenters and Noel Gavigan IrBEA Technical Executive.
- Webinar Attendees can submit Questions through the Q & A tab at the bottom of the screen and we will endeavour to answer as many of your questions as possible during the panel discussion.

## District Heating – Decarbonising our Heat Demand

JOHN O' SHEA Energy Systems Analyst - Codema



### **OUR TEAM**



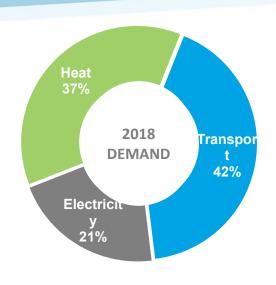
- Founded in 1997 as not-forprofit organisation
- Leading the Energy Transition in Dublin
- Energy Advisers to the fourDublin Local Authorities



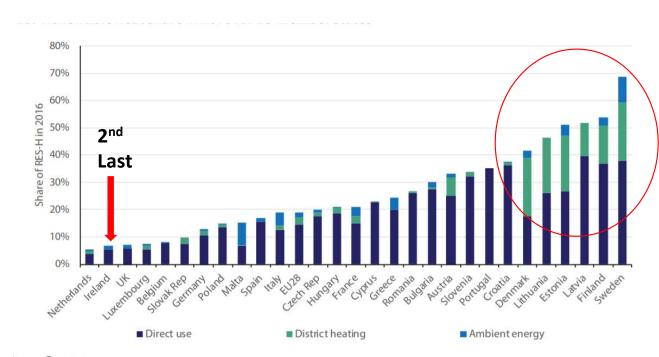









**MANAGEMENT** 




### Renewable Heat in Ireland









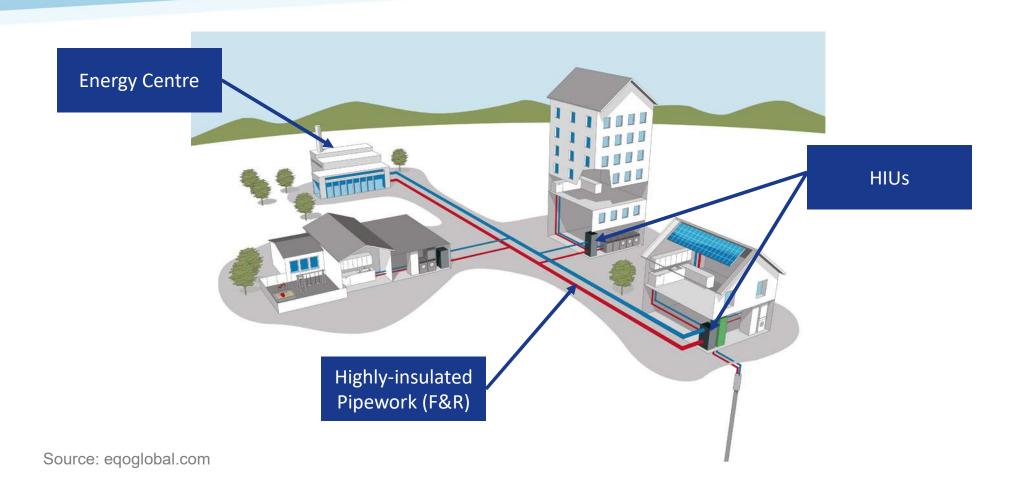
ource: Eurostat

### EU, National & Regional Policy



- Energy Efficiency Directive Article 14 comprehensive assessment and adequate measures to develop DH if cost effective
- Climate Action Fund €25M awarded to DH in 2019
- CAP 2019 Three specific actions for DH and seen as enabling infrastructure for geothermal action
- Programme for Government 2020 Learn from pilots and upscale
- EMRA RSES RPO 7.38 (heat mapping & high-level feasibility),
   RPO 7.35 (SEZ)
- LA Planning Policy Low-carbon DH, waste heat, geothermal







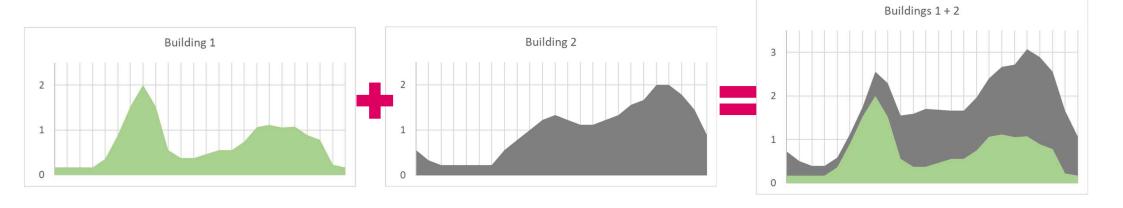



## What is District Heating?





### District Heating Pipes






### What Makes DH So Cost-Effective



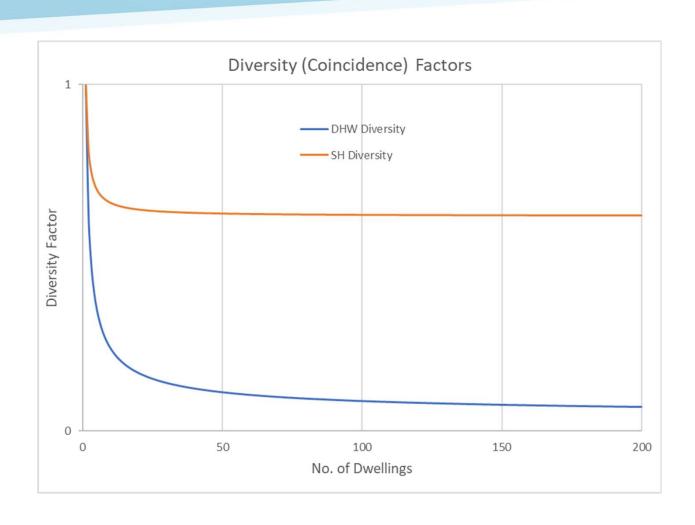
### 1. Diversity of Demand:



2



2






3

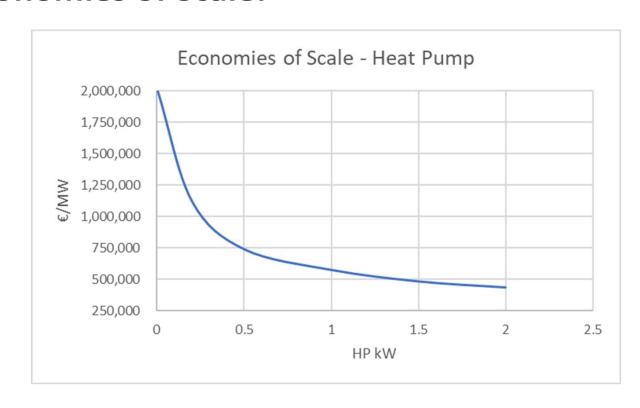
### What Makes DH So Cost-Effective





### What Makes DH So Cost-Effective




#### 2. Economies of Scale:

## Individual Heat Pumps:

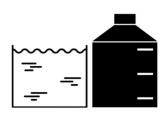
200 x 5kW = 1,000kW Cost €2,000,000

### **District Heating HP:**

1 x 1,000kW = 1,000kW Cost €500,000



### DH – more than just a heating solution






Industrial Waste Heat – increasing plant efficiency



Integrate more Renewable Electricity – Large scale Heat Pumps & Electric Boilers & RE CHP



Thermal Storage – Cheap Energy Storage for Large Scale Demand side Response



Customer Safety – no onsite combustion or fuels



Low-carbon & lower local air pollution

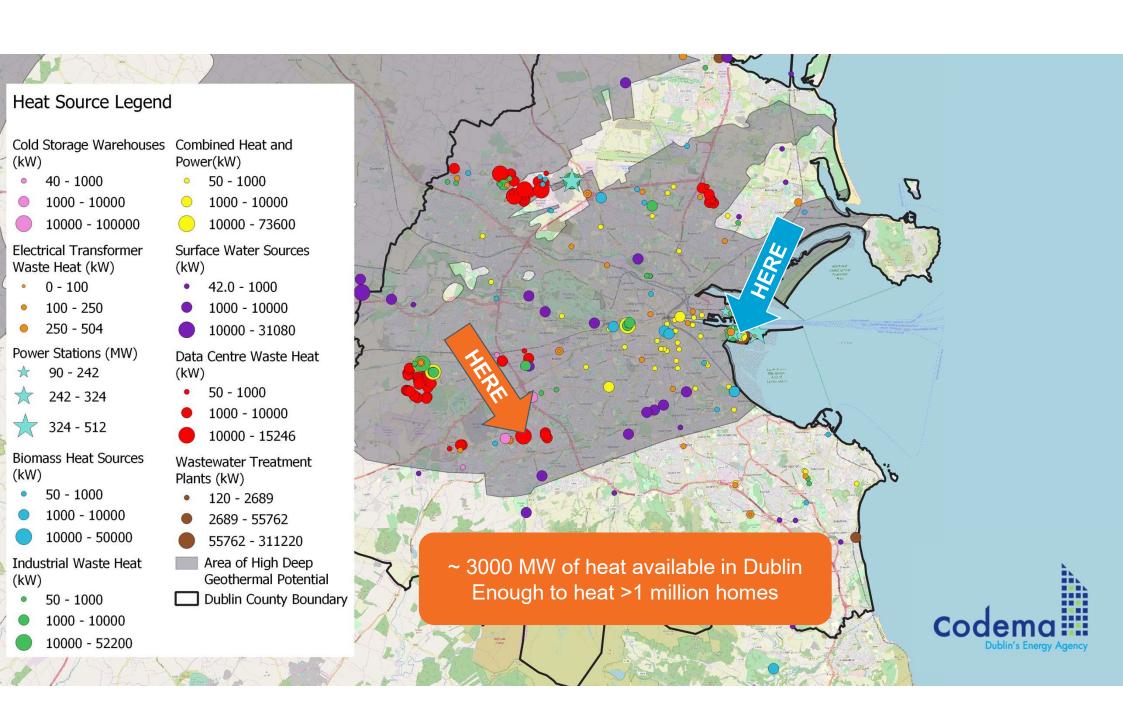


Less Fossil Fuel Imports – increased security of supply



Low-cost heat – utilises waste and renewable sources of heat




New market – new local employment

## Heat Demand Density



| Please enter a location!  District Heat demand density class  Heat D                                                         | Sum of heat<br>demand within<br>PSD | Share of total heat demand |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--|--|--|
| > 300 TJ/km²: Obvious DH potential                                                                                           | 12.9 PJ                             | 12.3 %                     |  |  |  |
| 120 – 300 TJ/km <sup>2</sup> : Feasible DH                                                                                   | 21.9 PJ                             | 20.9%                      |  |  |  |
| 50 – 120 TJ/km²: Subject to regulation                                                                                       | 24.8 PJ                             | 23.6%                      |  |  |  |
| Heat 20 – 50 TJ/km²: Future potential                                                                                        | 9.4 PJ                              | 6.2%                       |  |  |  |
| 33% Irish Heat demand feasible for DH 50. 57% feasible if supporting policy and regulation (similar to Denmark) put in place |                                     |                            |  |  |  |

https://www.districtenergy.ie/heat-atlas



### Where Codema Supports Local Authorities



#### **Planning & Policy:**

- 1. Energy Master-Planning (demand, sources, constraints) -Identifying Opportunity Areas
- 2. Planning policy to promote DHC & low-carbon heat
- 3. DHC national steering group
- 4. Transition roadmap

### Business Case Development:

- 1. Techno-economic analysis (CBA, WLC etc.)
- 2. Business model options
- 3. Outline design & early optimisation

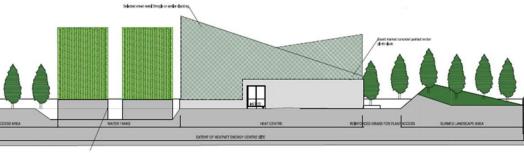
#### Stakeholder Engagement

- Identifying stakeholders (roles)
- 2. Effective communication (drivers)
- Communication materials Brochures, website etc.
- 4. Data sharing

### Procurement & Contracting:

- 1. Technical advisors
- 2. Procurement strategy to leverage capacity & allocate risk output based
- 3. Development of client requirements & standards
- 4. Bid evaluation & design review

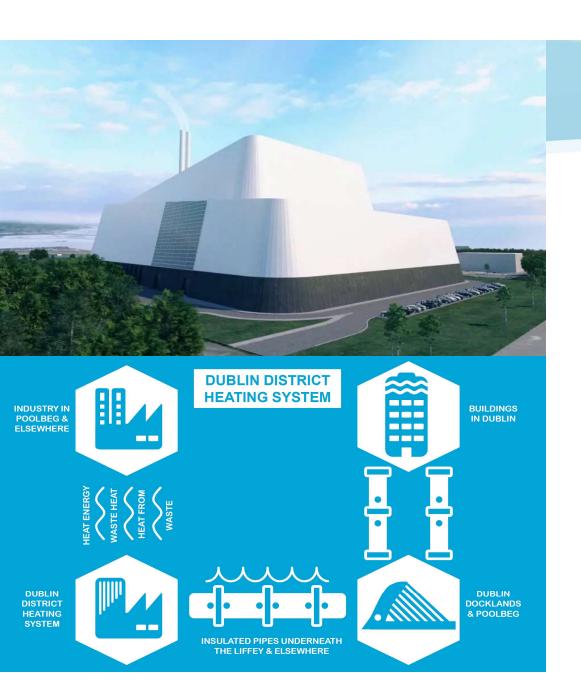
### Project Delivery & Capacity Building:


- 1. Pipes in the ground
- 2. Workshops with planners
- 3. Working with 3<sup>rd</sup> level Institutions
- 4. Best practice





## Tallaght District Heating Scheme


Heat Source: Data Centre Waste Heat













# **Dublin District Heating Scheme**

Heat Source: Dublin Waste to Energy (DWtE)



### Biomass Examples – Fjernvarme Fyn





- 97% of buildings in Odense supplied by DH (Including: biomass CHP, EfW, Data centre waste heat, etc.)
- Straw-fired CHP (32MWe, 88MWth) commissioned in 2009
- 200,000 tonnes straw per annum
- 4 days worth of fuel storage on site
- Fuel priced based on energy content
- Consumes 4 bales per minute at peak production
- Can use up to 15% wood chip in years where straw is wet





### Biomass Examples – Assens





- Serves 3,400 customers in Assens
- Biomass CHP 45,000 tonnes woodchips & 3,500 tonnes pellets (5MWe, 10.3 MWth + 4.6MWth condenser)
- Flue gas heat recovery (gas from 140°C to 37°C)
   produces 5,000 litres per hour of condensate also
   improves flue gas buoyancy so no pluming issues
- Electrofilter on flue gas allows condensate to be reused in the CHP
- Can use woodchip with MC up to 60% (90% of rated capacity) 100% capacity achievable with MC of 55% pay per energy content (on-site testing)







Email john.oshea@codema.ie Phone (+353) 01 707 9818 Web www.codema.ie



Engineering progress Enhancing lives

# District Heating design

IRBEA webinar, Weds 24<sup>th</sup> June Steve Richmond



# REHAU in a nutshell





Operating globally but still family owned

Leading developer in polymer-based solutions

- > Founded in 1948
- **~ 20,000** employees
- > **50** countries
- > 3.6 billion Euro annual revenue

### **Internally split into 5 divisions:**







Building Solutions



Window Solutions



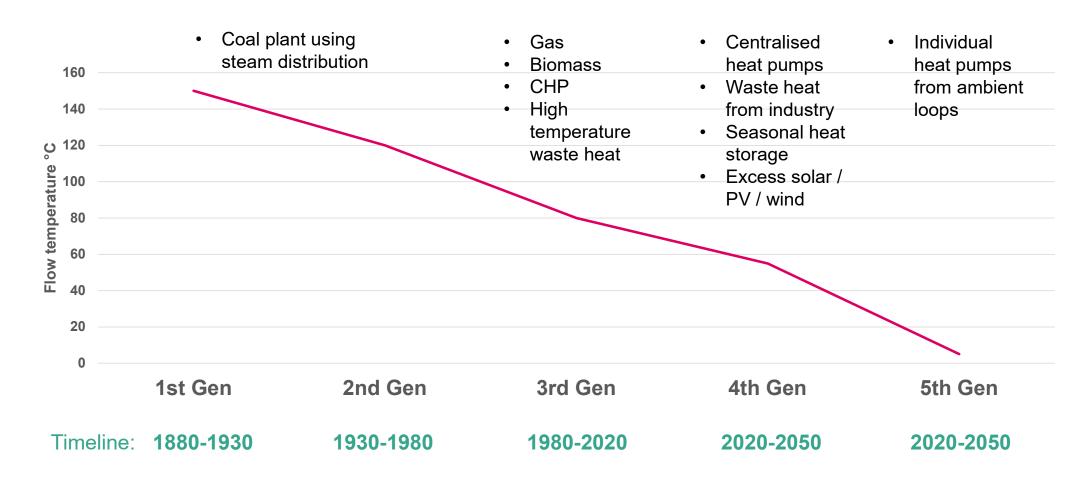
Furniture Solutions



### **REHAU** and district heating

Specialist sales & technical teams in the UK/ROI

Only UK manufacturer of PE-Xa district heating pipes


Largest UK stock of district heating pipes







### **Evolution of district heating flow temperatures**

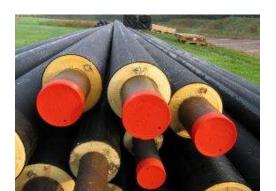


## Possible DH heat sources

Gas / gas CHP
Heat pumps
Biomass
AD / biogas
Solar thermal
Deep geothermal
Waste heat

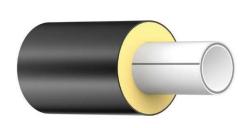









### District heating pipe materials


Steel (EN 253) or polymer (EN 15632)

Steel pipe with PU foam (bonded)



Welded

PP-R pipe with PU foam (bonded)



**Butt-welded** 

PE-Xa pipe with PU foam (bonded)



Compression sleeve

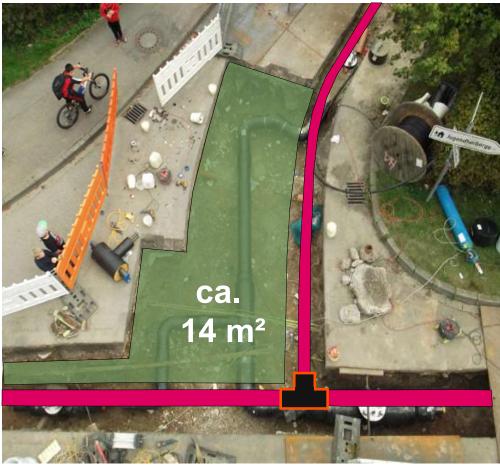
PE-Xa pipe with PEX foam (non-bonded)



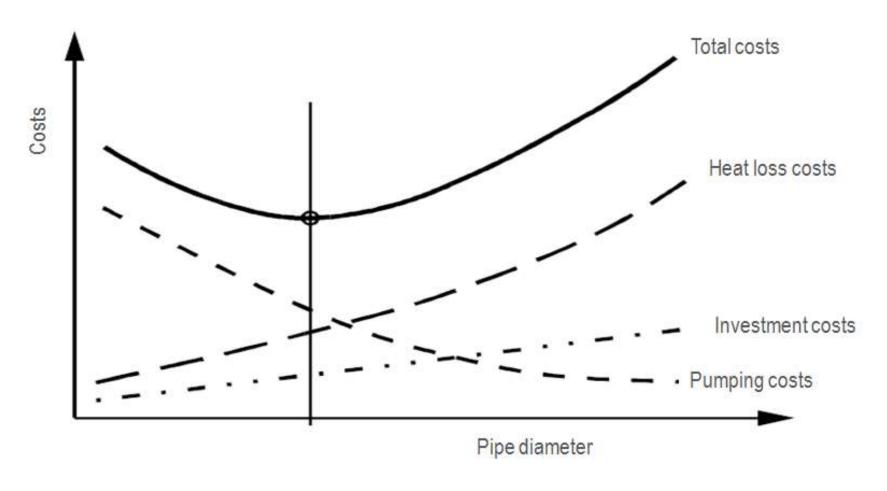
Compression sleeve

### **Pipe Material Comparison**









|                           | Steel                   | PP-R             | PE-Xa                          |
|---------------------------|-------------------------|------------------|--------------------------------|
| Max pipe size             | >DN1000                 | DN350 (400mm)    | DN130 (160mm)                  |
| Pipe lifespan at 4G temps | >50 years               | >50 years        | >50 years                      |
| Coils / sticks            | Sticks                  | Sticks           | Coils                          |
| Complexity of install     | Specialist steel welder | Civil contractor | Civil or mechanical contractor |
| Expansion loops needed    | Yes                     | No               | No                             |
| Leak detection required   | Yes                     | No               | No                             |

### Steel vs polymer – space required on site





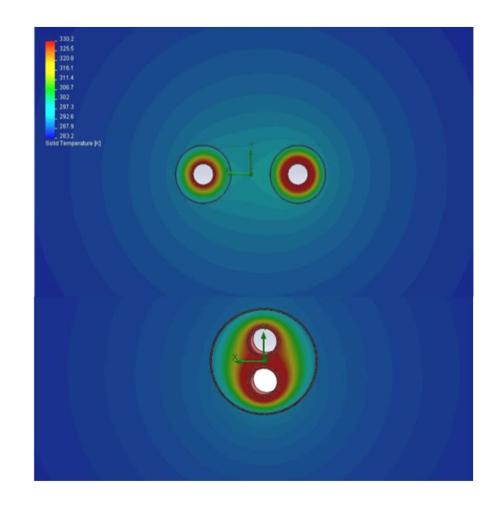
### Heat network design – a balancing act



### Twin pipes vs single pipes

2x UNO 25 = 10.9 W/m DUO 25 = 7.6 W/m

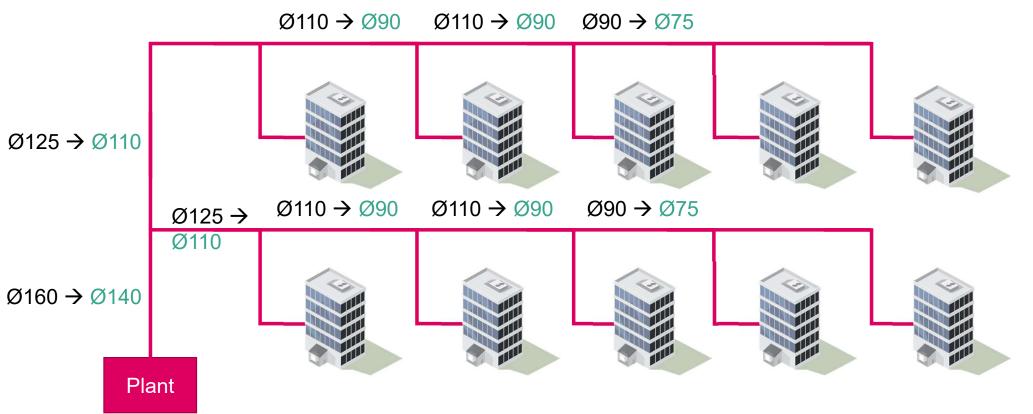
Heat loss reduction with DUO  $\rightarrow$  30%


2x UNO 40 = 16.6 W/m DUO 40 = 11.6 W/m

Heat loss reduction with DUO  $\rightarrow$  30%

2x UNO 63 = 19.5 W/m DUO 63 = 13.1 W/m

Heat loss reduction with DUO **→** 33%


Data taken at 80/50°C using RAUTHERMEX pipe.



### Sample network: 10 blocks of flats of 200kW each

ΔT scenarios

 $\Delta 20K \rightarrow \Delta 30K$ 



### Design case study

### Cost comparison

| Flow / return temperature (°C)          | Network material cost (£) | % Cost saving to 80/60°C or Δ20K network |
|-----------------------------------------|---------------------------|------------------------------------------|
| Δ 20K <sub>60/40</sub>                  | £188K                     |                                          |
| Δ 30K <sup>70/40</sup> <sub>65/35</sub> | £145K                     | 23%                                      |
| Δ40K 70/30                              | £118K                     | 37%                                      |

### **Design case study**

Heat loss external distribution network

| Flow / r | return temperature<br>(°C) | Total heat<br>losses<br>(kW) | Saving on additional electricity demand @ 0.10 £/kWh HP COP 3 | % saving to 80/60°C network |
|----------|----------------------------|------------------------------|---------------------------------------------------------------|-----------------------------|
| Δ 20K    | 80/60                      | 36.63 kW                     |                                                               |                             |
| Δ 20K    | 60/40                      | 24.42 kW                     | £3,565 /a                                                     | 33%                         |
| Δ 30K    | 70/40                      | 24.48 kW                     | £3,547 /a                                                     | 33%                         |
| Δ 301    | 65/35                      | 21.76 kW                     | £4,342 /a                                                     | 41%                         |
| Δ40K     | 70/30                      | 16.26 kW                     | £5,948 /a                                                     | 56%                         |

**Engineering progress Enhancing lives** 

A 4G heat network can reduce heat losses by 30-40% compared to an equivalent 3G network. CAPEX is influenced significantly by the operating temperatures and pipe choice.

### **Case studies**



Hill Park, Glasgow 350 apartments – ASHP – Over 1km network



**Eleanor Street, Sheffield** 127 properties – 1.9MW gas - Over 2km network

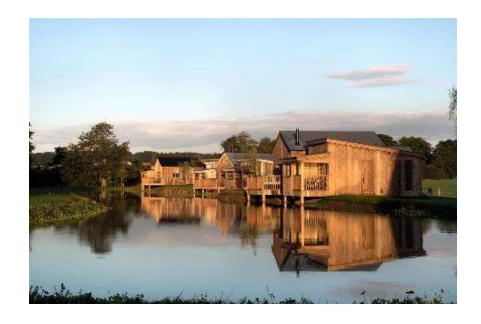
### **Case studies**



**Portmeirion, North Wales** 

Hotel & 30 cottages - Biomass - Over 3km network




**Dunbeg, Scotland** 

50 apartments – Biomass - Over1km network

### **Case studies**



Riverside, Glasgow Over 300 apartments – Gas – Over 500m network



**Soho Farmhouse Estate, Oxfordshire** 45 luxury houses – Biomass – Over 7km network

Engineering progress Enhancing lives

## Thank you for your attention

Any questions?

www.rehau.uk/districtheating

Steve.Richmond@rehau.com

07921 405948

