

www.wis-group.com

Presented by Chris Zammit

AIM:

- Give an overview of WIS Biogas and give reasons for our choices.
- Concentrate upon the improved feed system and its importance.
- Technical pitfalls and hurdles experienced
- Solutions

www.wis-group.com

Who We Are

WIS Group is one of Ireland's largest providers of process control, automation, instrumentation and environmental engineering solutions, consisting of two companies:

WIS Limited - specialising in electrical and environmental engineering, automation, process control and instrumentation

TOT Technical Limited - specialising in stainless steel and mild steel fabrication and site installation

Privately-owned, indigenous company, trading since 1983, currently employing over 150 engineers, technicians and support staff.



What We Do

Farm Scale BioGas Plants < 500kWe

<u>List of projects completed:</u>

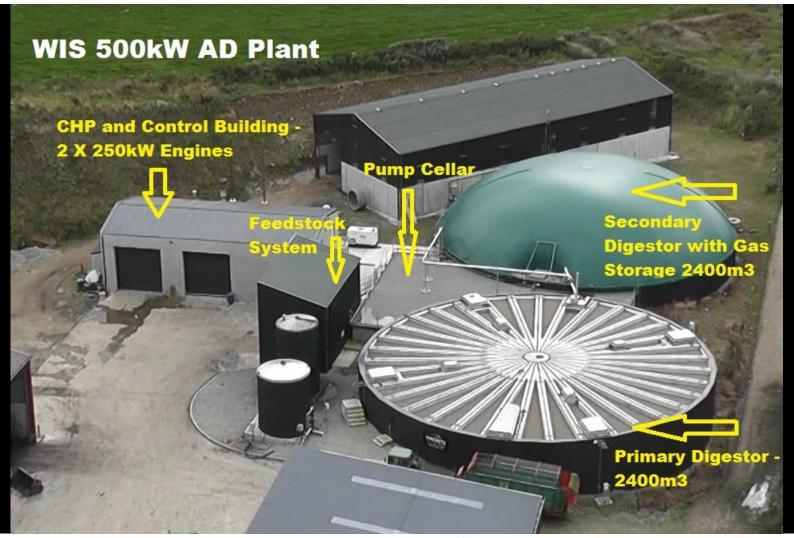
- Greenville Energy (500kWe) Ardstraw (May 2012)
- Progress Energy (500kWe) Dromore (April 2014)
- Drumlee AD(150kWe) Ballymoney (November 2014)

Projects nearing (

- PAR Renewab
- ENEL (500kW
- Bridge Energy
- WH Energy -
- Greenan Gen

Larger Farm Scale

- Glenmore (4.
- Peterhead (2



Design considerations

1st Geneneraton plants (using slurry + silage primary feedstocks)

- Low technology simplicity of controls (less cost?)
- Simple feed systems Augers, conveyors, external batching tanks
- Long retention times bigger solids require longer exposure
- Formation of crusts/surface layers entrapped air/gas causes flotation
- Higher mixing energy requirement long fibres increase viscosity
- Higher risk of catastrophic failures (need for stand-by equipment)
- Less control over rate of gas production increased gas buffer volume
- Can be more labour intensive / less user friendly

Design considerations

New Geneneraton plants (using slurry + silage primary feedstocks)

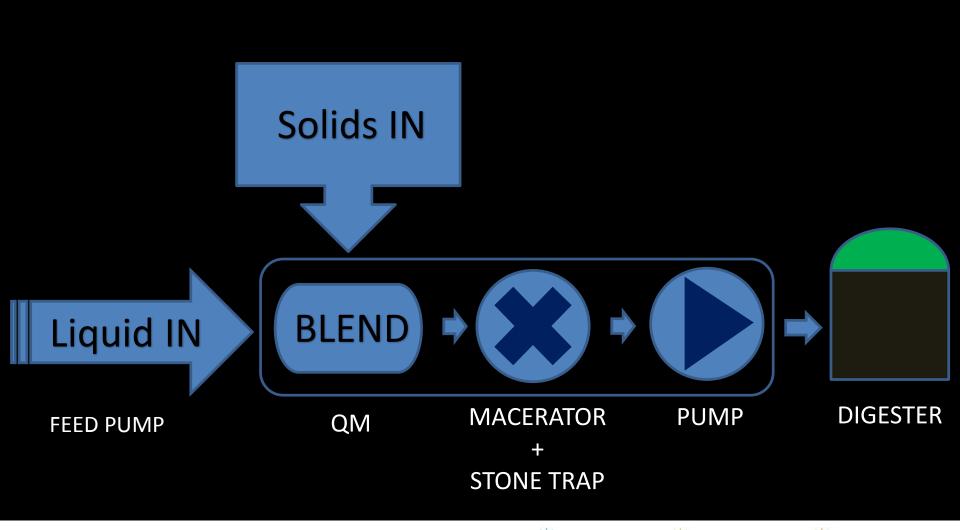
- High technology Full automation / PLC controls
- More complex feed systems elimination of augers, conveyors
- In line preparation of feed into a blend that can be pumped
- Maceration of all fibres to reduce size/increase surface area
- Blending to a precise DM content/viscosity + removal of entrapped air
- Less energy requirement for mixing
- Total elimination of surface layers
- Virtually eliminate catastrophic failures
- High control over rate of gas production smaller gas reservoir required

Design criteria

- **Design for High Efficiency**
 - = faster return on investment

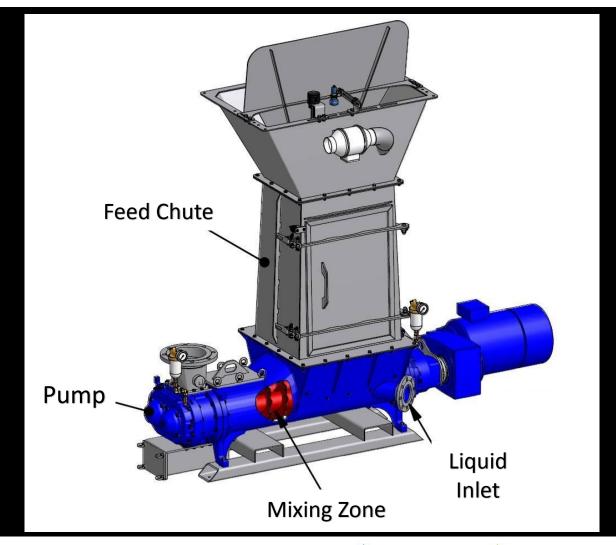
- Fail safe design
 - = component failure does not lead to disaster

- **Design for easy maintenance**
 - = vital components are easily accessible without the need to halt operation



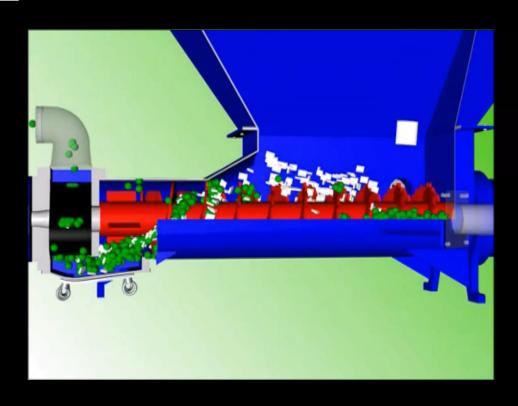
- **Design for Longevity**
 - = e.g. low speed pumps for reduced wear from friction
- **Technical Support and Servicing**
 - = One-stop-shop with <u>Local</u> support

Feed system

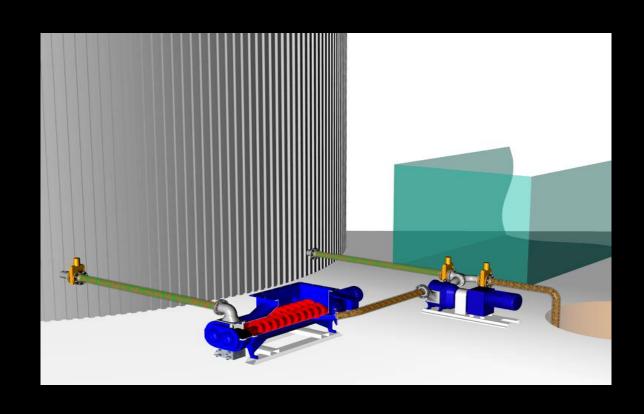


W15 GROUP

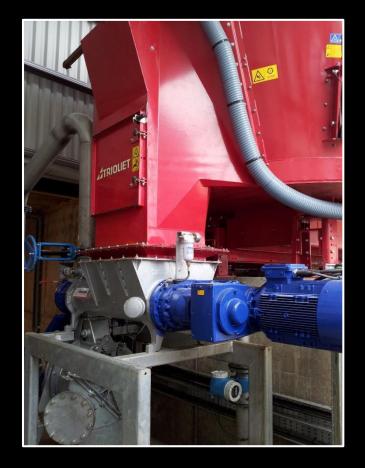
Solids blending



Blending dynamics

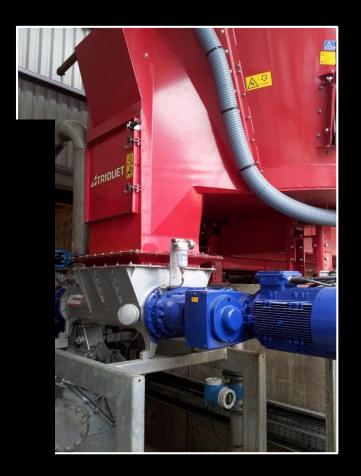

The Solids Blender

Flow of feedstock



Plant and Equiment

- Solids Feeder: Trioliet Solomix 40m3
- Solids/Liquid Blending handling via Vogelsang QuickMix VX186-192QHD with intermediate maceration using Rotacut RCX-58G

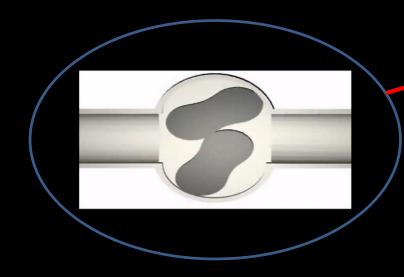


Plant and Equiment

Solids Feeder: Trioliet Solomix 40m3

Plant and Equipment

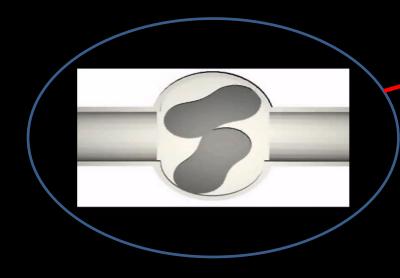
Liquid handling via Vogelsang BioCut VX136-140Q/RC5000 combo





Plant and Equipment

Liquid handling via Vogelsang BioCut VX136-140Q/RC5000 combo



Plant and Equipment

Liquid handling via Vogelsang BioCut VX136-140Q/RC5000 combo

Plant and Equipment

- Liquid handling via Vogelsang BioCut VX136-140Q/RC5000 combo
- External heating via shell & tube heat exchanger using dedicated digestate circulating pump

W15 GROUP

Plant and Equipment

 Digestate mixing using guide-rail mounted, fully adjustable submersible mixers (Flygt-Xylem)

Problems Encountered

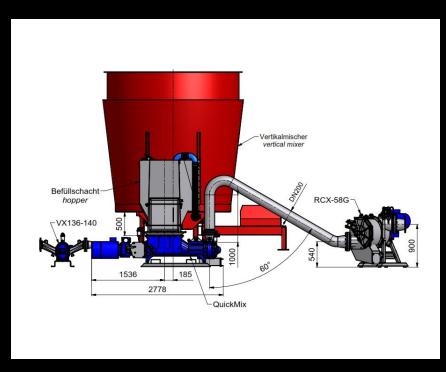
- a) Related to working with 'Irish' Silage
 - Precision chopped vs round bale silage
 - Cutting and swathing methods to avoid taking up too much grit/earth/stones
 - Clamp construction and site management

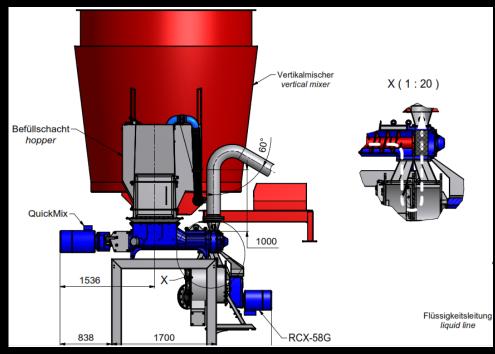
b) Related to material dynamics



Problems Encountered

- Related to (in)experience
 - Importance of quality of food stock
 - Learning the chemistry /biology; interpretation of analysis and tests
 - Experimenting with different feed stocks; feed system must be capable of managing whatever is thrown at it.
- Related to environmental conditions
 - Seasonality ensuring adequate feedstocks for year round operation





The Irish Configuration

GERMAN CONFIGURATION IRISH CONFIGURATION

3 years on

Dealing with variety of food stocks as they come available on the market

Construction of additional reception tanks and pipework/valves

 Construction of additional storage bays for the reception of material other than silage.

Output data www.variablepitch.co.uk

Nov 2013 to Oct 2014

94.74%

Output data www.variablepitch.co.uk

Greenville Energy Ltd Output

From Nov 2013 to Oct 2014 the average output was 94.74 %

Capacity (kW): 490

Developer: Greenville Energy Ltd

Period	Days	Published Capacity (kW)	Theoretical Capacity (MWh)	Reported Output (MWh)	Capacity Factor (%)
Apr 2013	30	500.00	360.00	275	Ó 76.3889
May 2013	31	500.00	372.00	330	6 88.7097
Jun 2013	30	500.00	360.00	303	6 84.1667
Jul 2013	31	500.00	372.00	313	Ó 84.1398
Aug 2013	31	500.00	372.00	360	6 96.7742
<u>8ep 2013</u>	30	500.00	360.00	352	ó 97.7778
Oct 2013	31	500.00	372.00	352	6 94.6237
Nov 2013	30	500.00	360.00	319	Ø 88.6111
Dec 2013	31	500.00	372.00	354	Ó 95.1613
Jan 2014	31	500.00	372.00	359	Ø 96.5054
Feb 2014	28	500.00	336.00	301	Ó 89.5833
Mar 2014	31	500.00	372.00	364	6 97.8495
Apr 2014	30	500.00	360.00	341	ó 94.7222
May 2014	31	500.00	372.00	355	Ø 95.4301
Jun 2014	30	500.00	360.00	346	Ø 96.1111
Jul 2014	31	500.00	372.00	336	ó 90.3226
Aug 2014	31	500.00	372.00	363	6 97.5806
<u>8ep 2014</u>	30	500.00	360.00	349	6 96.9444
Oct 2014	31	500.00	372.00	365	ó 98.1183

www.wis-group.com